GEFRAN

4B96

POSITION, FORCE and PRESSURE INDICATOR with INPUT for STRAIN-GAUGE and POTENTIOMETER

INSTRUCTIONS FOR USE AND WARNINGS

Software Version 3.2x

code 81653C / Edit. 03 - 03/05

GENERAL INDEX

CE

		page
	Graphic symbol used	23
1	Preliminary instructions	23
	General description	23
	Indicator in basic version	23
	Operator interface	23
	Electrical interface	23
	Preliminary warnings	24
2	Installation and connection	25
	Electrical power supply	25
	Notes concerning electrical safety and	
	Electromagnetic compatibility	25
	Advice for correct installation	
	for EMC	26
	Instrument power supply	26
	Inputs and outputs connection	26
	Dimensions and cut-out	27
	Installation with panel mounting	27
	Warnings and instructions for	
	mounting to the panel	27
	Nominal ambient conditions	27
	Electrical connections	28
3	Functions	29
	Operator interface	29
	General operating notes	30
	Navigating through the instrument menu	ı 31

		0000
		page
4	Configuration and programming	32
	Configuration/Programming	32
	Application notes	37
	Eb function	37
	HOLD function	37
	UCAL strain-gauge calibration	37
5	Technical specifications	38
6	Maintenance	39
	Cleaning the instrument	39
	Repairs	39
	Checking the jumpers	39
	Troubleshooting Guide	40
7	Technical-Commercial information	40
	Order code	40
	Accessories	
	RS232/TTL interface for Gefran	
	Instrument configuration	41
	Appendix	41

The contents of each section are summarized immediately following the section heading

Graphic symbols used

To distinguish between the type and importance of the information provided in these instructions for use, graphic symbols have been used as a reference to make interpreting the information clearer.

Indicates the contents of the various manual sections, the general warnings, notes, and other points to which the reader's attention should be drawn.

Indicates a particularly delicate situation that could affect the safety and correct working operation of the instrument, or a rule that must be strictly observed to avoid dangerous situations

Indicates a condition of risk for the safety of the user, due to the presence of dangerous voltages at the points shown

Indicates a suggestion based on the experience of the GEFRAN Technical Staff, which could prove especially useful under given circumstances

Indicates a reference to Detailed Technical Documents available on the GEFRAN web site **www.gefran.com**

AL.2 In the programming and configuration flows for the instrument, indicates **all** the parameters that can be set in the configuration.

1 • PRELIMINARY INSTRUCTIONS

General Description

GEFRAN series 4B96 digital indicators have been designed for temperature control in any applications involving heating or cooling processes.

They represent an exclusive combination of performance, reliability and applicational flexibility.

In particular, this new line of Gefran indicators is the ideal solution for application in sectors where performance and service continuity are important, including:

- extrusion lines
- presses for rubber
- test benches
- processing plant for the food industry
- weighing
- manostat
- positioner
- etc.

The 4B96 series indicators are made on an extremely versatile hardware and software platform, that allows the most suitable composition for the plant to be chosen from a series of options, up to a maximum of:

- variable input
- transmitter power supply

Indicator in basic version

- 1 input that allows connection of most popular sensor types
- potentiometer with 100 ohm minimum resistance
- \bullet load cells with autoranging sensitivity from 1.5 to 3.3mV/V
- strain-gauge pressure probes accuracy better than 0.2% f.s.
- output for sensor or potentiometer power supply
- 1.2 Vdc for potentiometer
- 5Vdc, 10Vdc max 120 mA for strain-gauge
- service serial line for configuration via PC (Winstrum)

Operator Interface

All the operator interface devices are concentrated on the controller faceplate, suitably protected by a membrane in Lexan that guarantees IP65 level protection.

- 3 buttons to be used for manual configuration/selection
- 1 red five-digit displays (Process Variable)

Electrical Interface

All connection terminals (power supply, inputs, outputs, options) are grouped together on the back of the instrument.

For technical specifications and performance details refer to Section 5 "Technical Specifications".

Preliminary Warnings

The following preliminary warnings should be read before installing and using the series 4B 96 indicator. This will allow the controller to be put into service more quickly and will avoid certain problems which may mistakenly be interpreted as malfunctions or limitations of the interceptor.

• Immediately after unpacking the controller, make a note of the order code and the other identification data given on the label affixed to the outside of the container and copy them to the table below.

These details must always be kept close at hand and

SN:	 (Serial no.)
CODE:	 (Finished product code)
TYPE:	 (Order Code)
SUPPLY:	 (Type of electrical power supply)
VERS:	 (Software version)

referred to the personnel involved in the event of help from Gefran Customer Service Assistance.

- Check also that the controller is complete and has not been damaged at all during transit, and that the package contains not only the instrument and these Instructions for Use, but also the two brackets for fixing to the panel and the dust protection seal - see: Installation with Panel Fixing in Section 2. Any inconsistencies, omissions or evident signs of damage should be reported immediately to your Gefran sales agent.
- Check that the order code corresponds with the configuration requested for the application the controller is needed for, referring to Section 7: "Technical - Commercial Information".
 - No. and Type of Inputs/Outputs available
 - Presence of the necessary options and accessories

Mains voltage supply

Ex: 4B - 96 - 5 - 10 - 1

Model 4B96 indicator 10V output for transmitter power supply Power supply 100...240Vac/dc

- Before installing the series 4B96 instrument on the control panel of the machine or host system, refer to the paragraph "Dimensions and Cut-out" in Section 2 "Installation and Connection".
- Where configuration by PC is provided for, make sure the interface RS232 cable is available and the CD- ROM containing the WINSTRUM software. For the order code refer to Section 7 "Technical -Commercial Information" ...

Users and/or system integrators who wish to know more about the concepts of serial communication between standard PC and/or Gefran Industrial PC and Gefran Programmable Instruments , can access the various technical reference Documents in Adobe Acrobat format available in the Download section of the Gefran Web Site www.gefran.com including:

- Serial Communication
- MODBus Protocol

In the same Download section of the Gefran Web Site www.gefran.com the reference manual is available in Adobe Acrobat format. In the event of presumed instrument malfunction. before contacting Gefran Technical Service Assistance, refer to the Troubleshooting Guide given in Section 6 "Maintenance", and if necessary refer to the F.A.Q. Section (Frequently Asked Questions) on the Gefran Web Site www.gefran.com

2 • INSTALLATION AND CONNECTION

This section contains the instructions necessary for correct installation of the 4B96 instrument into the machine control panel or the host system and for correct connection of the interceptor power supply, inputs, outputs and interfaces.

Before proceeding with installation read the following warnings carefully! Remember that lack of observation of these warnings could lead to problems of electrical safety and electromagnetic compatibility, as well as invalidating the warranty.

Electrical power supply

• the instrument is NOT equipped with an On/Off switch: the user must provide a two-phase disconnecting switch that conforms to the required safety standards (CE marking), to cut off the power supply upstream of the instrument.

The switch must be located in the immediate vicinity of the instrument and must be within easy reach of the operator.

One switch may control more than one instrument.

• if the instrument is connected to NOT isolated electrical equipment (e.g. thermocouples), the earth connection must be made with a specific conductor to prevent the connection itself from coming directly through the machine structure.

• if the instrument is used in applications with risk of damage to persons, machinery or materials, it is essential to connect it up to auxiliary alarm equipment. It is advisable to make sure that alarm signals are also triggered during normal operation.

The instrument must NOT be installed in flammable or explosive environments; it may be connected to equipment operating in such atmospheres only by means of appropriate and adequate types of interface, conforming to the applicable safety standards.

Notes Concerning Electrical Safety and **Electromagnetic Compatibility:**

CE MARKING: EMC Conformity (electromagnetic compatibility)

in accordance with EEC Directive 89/336/CEE modified by Directive 93/68.

Series 40B96 interceptor are mainly designed to operate in industrial environments, installed on the switchboards or control panels of productive process machines or plants.

As regards electromagnetic compatibility, the strictest generic standards have been adopted, as indicated in the table below.

BT Conformity (low tension) in accordance with Directive 73/23/CEE modified by Directive 93/68.

EMC conformity has been tested with the following connections.

Function	Cable type	Length	
Power supply cable	1mm ²	1m	
Input	1mm ²	3m	

EMC Emission				
Generic standards, emission standard for residential commer- cial and light industrial environments	CEI EN 61000-6-3			
Emission enclosure	CEI EN 61000-6-3	Gruppo1 Classe B		
Emission AC mains	CEI EN 61000-6-3	Gruppo1 Classe B		
Radiated emission	CEI EN 61326 CISPR 16-2	Classe B		
EMC In	nmunity			
Generic standards, immunity standard for industrial environ- ments	CEI EN 61000-6-2			
Immunity ESD	CEI EN 61000-4-2	4 kV contact discharge level 2 8 kV air discharge level 3		
Immunity RF interference	CEI EN 61000-4-3 /A1	10 V/m amplitude modulated 80 MHz-1 GHz 10 V/m amplitude modulated 1.4 GHz-2 GHz		
Immunity conducted disturbance	CEI EN 61000-4-6	10 V/m amplitude modulated 0.15 MHz- 80 MHz (level 3)		
Immunity burst	CEI EN 61000-4-4	2 kV power line (level 3) 2 kV I/O signal line (level 4)		
Immunity pulse	CEI EN 61000-4-5	Power line-line 1 kV (level 2) Power line-earth 2 kV (level 3) Signal line-earth 1 kV (level 2)		
Immunity Magnetic fields	CEI EN 61000-4-8	100 A/m (level 5)		
Voltage dips, short interruptions and voltage immunity tests	CEI EN 61000-4-11	100%U, 70%U, 40%U,		
LVD S	Safety			
Safety requirements for electrical equipment for measurement, control and laboratory use	CEI EN 61010-1			

Advice for Correct Installation for EMC

Inputs and outputs connection

Instrument power supply

- The power supply to the electronic equipment on the switchboards must always come directly from an isolation device with a fuse for the instrument part.
- The electronic instruments and electromechanical power devices such as relays, contactors, solenoid valves, etc., must always be powered by separate lines.
- When the electronic instrument power supply is strongly disturbed by the commutation of transistor or power units or motors, an isolation transformer should be used for the controllers only, earthing the screen.
- It is essential that the plant has a good earth connection:
 - the voltage between neutral and earth must not be <1V the Ohmic resistance must be <6 Ω ;
- If the mains voltage fluctuates strongly, use a voltage stabilizer.
- In the proximity of high frequency generators or arc welders, use adequate mains filters.
- The power supply lines must be separate from the instrument input and output ones.

- The externally connected circuits must be doubly isolated.
 To connect the analogue inputs the following is
- To connect the analogue inputs the following is necessary:

physically separate the input cables from those of the power supply, the outputs and the power connections.
use woven and screened cables, with the screen earthed in one point only

 To connect the regulating and alarm outputs (contactors, solenoid valves, motors, fans, etc.), fit RC groups (resistance and condensers in series) in parallel to the inductive loads that operate in Alternating Current.

(Note: all the condensers must conform to VDE (class X2) standards and withstand a voltage of at least 220V AC. The resistances must be at least 2W).

• Fit a 1N4007 diode in parallel with the coil of the inductive loads that operate in Direct Current.

GEFRAN S.p.A. declines all responsibility for any damage to persons or property caused by tampering, neglect, improper use or any use which does not conform to the characteristics of the instrument and to the indications given in these Instructions for Use.

Dimensions and cut-out

Installation with panel mounting

As well as the actual instrument and these instructions for use, the package also contains:

- 2 panel fixing brackets (A)
- \bullet 1 protective seal against dust and water spray $~({\bf B})$

Fit the instrument to the panel as shown in the figure.

Warnings and instructions for mounting to the panel

Instructions for installation category II, pollution level 2, double isolation.

- only for low power supply: supply from Class 2 or low voltage limited energy source.
- the power supply lines must be separate from the controller input and output ones
- group the instruments together keeping them separate from the powered part of the relay
- do not install high-power remote switches, contactors, relays, thyristor power units (especially the "phase angle" type), motors, etc. in the same switchboard
- avoid dust, humidity, corrosive gasses and heat sources
- do not block the ventilation holes: the working temperature must be between 0...50°C
- surrounding air: 50°C
- use 60/75°C copper (Cu) conductor only, wire size range 2x No 22 - 14AWG, Solid/Stranded
- use terminal tightening torque 0.5N m

Altitude	Up to 2000m
Working/storage	050°C/-2070°C
temperature	
Non condensing	2085%
relative humidity	

Nominal ambient conditions

Before supplying the Controller with power, make sure that the mains voltage is the same as that shown in the last number of the order code.

Ex: 4B96-5 - xx - 1 = 100..240Vac/dc 4B96-5 - xx - 0 = 11..27Vac/dc

Always make the connections using cable types suitable for the voltage and current limits given in Section 5 - Technical Specifications.

If the instrument has faston terminals these must be protected and isolated. If it has screw terminals, the wires must be attached, at least in pairs

Power Supply

R.

Inputs

3 • FUNCTIONS

This section illustrates the functions and operating modes of the displays, the indicator lights and the buttons that make up the operator interface of series 1200/1300 controllers. It is therefore an essential requirement for programming and configuring the controllers correctly.

Operator Interface

ID	Symbol	Function
0	88888	Shows the process variable, the menu identification, the parameters identification and the error codes
0		Inc reases/ Dec reases the value of the parameter displayed until the max/min. value is reached.
	\bigtriangledown	Held down: progressively increases the speed of increasing/decreasing the value displayed.
	F	Used to move between the various menus and parameters of the instrument. Confirms the value of the current parameter (or parameter edited using
3	bar	Position where to apply the label with united ingegneristica

General Operating Notes

During the test, all the display segments will flash,

Switching on and using the intrument

Self-diagnostics

Normal Working - Level 1

Displays the value of the Process Variable.

- 399
- By pressing briefly it is possible to see in sequence (and if necessary edit) the significant values that condition the way the instrument works in Level 1 (Thresholds of interception)

Immediately after switching on the instrument carries out a self-diagnostic test.

when finished, enters normal work mode (Level 1) and displays variable value.

 Keeping pressed down for 3 seconds we enter the Programming/Configuration menu - see Navigation in the instrument Menus for further details..

Errors while working

In the event of errors during normal working:

Lo process variable < min. scale limit (param. L5 in the l_0)

H I process variable > max. scale limit (param. H5 in the In)

br broken probe or input values higher than maximum limits

Er input values lower than minimum limits

Eb Probe power supply failure (function enabled via parameters £. I on In menu)

To solve the problem, refer to the paragraph: Troubleshooting Guide in Section 6 Maintenance

Navigating through the instrument Menu

Keep () pressed down to scroll through the menus in sequence and release it when the required menu appears. Press () to access the parameters of the selected menu.

The parameters and menus not significant for a given configuration are NOT displayed

4 • CONFIGURATION / PROGRAMMING

This section contains the instructions necessary to configure the instrument according to the needs of the application..

Optimal working operation of the 4B96 in the field of application it is intended for depends largely on correct configuration and programming of the relevant control parameters.

The flexibility and high performance level of these instruments is in fact based on the numerous parameters that can be programmed directly by the user with the buttons on the control panel, or transferred from a PC, in the form of configuration files.

Configuration

Access to all the configuration / programming menus and to all the parameters available in configuration, allows every detail of the Controller to be configured, to satisfy all application requirements.

Correct setting of the parameters involved in the configuration presumes a high level of knowledge regarding of use problems and techniques, and so it is recommended that these parameters are not changed unless the user is fully aware of the consequences, that could arise form incorrect settings.

It is the user's responsibility to check that the parameters are set correctly before putting the instrument into service, in order to avoid damage to persons or property.

For any doubts or clarification needed, please visit the Web Site **www.gefran.com** and if necessary contact the Gefran Customer Care service..

The following pages describe one by one the various menus and show for each parameter the concise description of the function performed, any default values and the range of values that can be set.

Supplementary notes on consulting the Configuration/ Programming pages

To set some particularly complex parameters certain tables or detailed explanatory notes must be referred to. These tables or explanatory notes are shown directly on the right of the page next to the parameter in question.

Application notes

The detailed explanations of certain functioning modes or special techniques the result Gefran's lengthy experience in the field of temperature control are instead

contained at the end of the Configuration/Programming Section and can represent a valuable reference tool for the user.

Where necessary, in the configuration / programming flows the appropriate referrals to these Application Notes are provided.

Password: PR

When scrolling through the menu (keeping pressed down), following the *In* menu, the word *PR* appears.

Access to the next menus is only possible if the PR = 99, parameter is set to 99 by pressing \bigcirc \bigtriangledown .

Having set the value to 99, press (and keep it pressed down to access the next menus.

Protection code: Pr

The P_r parameter is used to enable or disable the display and/or the possibility of editing certain parameters. For further details refer to the description of the P_r parameter in the configuration flows.

Jumper S4 on CPU Board

The absence of jumper S4 on the CPU board of the instrument prevents access to all the menus when the hardware configuration of the instrument does not require the pre-set parameters to be changed.

This jumper is engaged or disengaged during production and normally does not need to be modified by the final user. For further information, refer to Section 6 - Maintenance.

IF Information display

This menu provides information of the configuration (software version).

In Input settings

This menu makes it possible to configure the parameters for the instrument input signals.

Ł.P

Probe type, signal and main input scale

ĿР	Probe type	Signal polarization	Mair	inputs scale lim	nits
0	Potentiometer	Positive (ex. 0/1V)	-1999/9999	-19990/99990	-1999/28000
1	Potentiometer	Positive (ex. 0/1V)	Linear custom	Linear custom	Linear custom
2	Strain gauge	Positive (ex. 0/10mV)	-1999/9999	-19990/99990	-1999/28000
3	Strain gauge	Symmetrical (ex10/+10mV)	-1999/9999	-19990/99990	-1999/28000

Resolution

> 14bit; 16000 points (sampling Eb 120msec)

> 13bit; 8000 points (samplingEb 60msec)

> 12bit; 4000 points (sampling Eb 30msec)

> 14bit (campionamento Eb 240ms)

If set to "0", the medium filter on the sample value is

Fd

0.5

0

1

3

Select sampling time (resolution)

For Strain gauge with Sensor power supply control (Eb)

120ms

120ms

60ms

30ms

+4 to disable filter (average of the last eight values sampled) Strain gauge only

For potentiometer

120ms

60ms

30ms

15ms

+8 disables Eb (sampling time is halved)

N.B.: maximum sampling frequency and minimum intercept time is obtained with code 15 (15 msec, 11bit resolution, filter off)

excluded

Digital filter on input

[0.0 ... 20.0] sec

Digital filter on input display [0 ... 9.9] punti scala

¥		DP	Format	
dP	Decimal point position for input	0	XXXXX	
	scale	1	XXXX.X	
1		2	XXX.XX	
		3	XX.XXX	
¥		+4 to displa (only for +8 select 4 (value) +16 select	ay Lo below value r TP = 0 or 2) digit x10 input so of least significan 5 digit input scale	e L.5 -(代5 - L.5) /256 cale t digit set to 0)
	Minimum limit of main input scale and retransmission analog output	Min Max ──► the Ł₽ p	value associated arameter	with the input selected with
<u> </u>	Maximum limit of main input scale and retransmission analog output	→ Min Max the Ł₽ p	value associated arameter	with the input selected with
		-		

Pr Protection code

This menu makes it possible to enable/disenable the display and/or modification of specific parameters

Lo Input linearization

This menu makes it possible to carry out custom linearization for the main input. Only if EP = Linear Custom

U.C User calibration

This menu makes it possible to carry out user calibration.

Eb Function

The standard device is produced with parameter C.I.= 8,

with sampling time of 120 msec and Eb function disabled.

The Eb function lets you detect if the probe power supply is interrupted. This function is valid for probe currents > 20mA (8mA in version 2.0x)

Example:

- probe voltage 10V
- strain-gauge resistance 350Ω

- current =
$$\frac{V}{R} = \frac{10}{350} \approx 28 \text{mA}$$

or for three probes connected in parallel

- probe voltage 10V
- strain-gauge resistance 350Ω

HOLD function

The input value is frozen while the function is active.

UCAL: strain-gauge calibration

a) Positive signal polarization

Suppose we test a probe (load cell) with sensitivity of 2mV/V, powered at 10V.

The input signal range is 0 to 20mV. From unloaded to loaded cell you should see a value from 0 to 1000.

Set scale limits: L.S. = 0; H.S. = 1000. Calibration procedure: U.C. = 3.

Phase F1: unload the cell (equal to applying input voltage of 0mV). Wait 2 seconds for the signal to stabilize. Press key F. Phase F2: load the cell with a sample weight: for example, 80% of total weight (equal to applying input voltage of 80% of 20mV (2mV*10V) = 16mV). On display, set a value equal to 80% of H.S. = 800.

Press key F.

Phase F3: unload the cell (equal to applying input voltage of 0mV). Wait 2 seconds for the signal to stabilize. Press key F (calibration finished).

b) Suppose we test a probe (force sensor) with sensitivity of 2mV/V, powered at 10V.

The input signal range is -20mV to 20mV. From maximum compression to maximum traction you should see a value from -1000 to 1000. Set scale limits: L.S. = -1000; H.S. = 1000.

Calibration procedure: U.C. = 4.

Phase F1: do not apply any traction or compression to the sensor (equal to applying input voltage of 0mV).

Wait 2 seconds for the signal to stabilize. Press key F.

Phase F2: apply compression equal to 80% of total compression

(equal to applying input voltage of 80% of $20mV (2mV^*10V) = 16mV$). On display, set a value equal to 80% of H.S. = 800. Press key F.

Phase F3: do not apply any traction or compression to the sensor (equal to applying input voltage of 0mV). Wait 2 seconds for the signal to stabilize. Press key F (calibration finished).

5 • TECHNICAL SPECIFICATIONS

This section contains a list of the Technical Specifications for the 4B96 instrument.

Display	5 red digits, digit height 14mm (4 digits)
Keys	3 mechanical type (NC, DEC, F)
Accuracy	0.2% f.s. ±1 digit a temperatura ambiente di 25°C t.s. 120msec
Thermal drift	0,005% f.s. / °C
Resolution	function of settable sampling time:
	>14bit, t.s. 120msec with sensor power control if strain gauge
	>13bit, t.s. 30msec (60msec with strain gauge power control)
	>12bit, t.s. 15msec (30msec with strain gauge power control)
Main input	differential input for
	- from strain-gauge 350 Ω (for pressure, force, etc.) sensitivity
	5mV/V with strain-gauge power max 15V, (7.5mV/V con power
	supply max. 10V-15mV/V with power supply max 5V), positive or
	symmetrical polarization, calibration with automatic calibration of
	sensitivity, possible signaling of interrupted sensor power supply
	- from potentiometer with power supply 1.2V, $\geq 100 \Omega$
	- 020/420mA transmitter with 24Vdc supply (Ri = 50Ω)
Linear scale range	-19999999 (with 4 digits),-199928000 (with 5 digits) settable
	decimal point; a 32 section linearization can be inserted
Sensor power	1,2Vdc for potentiometer > 100Ω
	5Vdc, 10Vdc, max 120mA (for strain-gauge)
	15Vdc, 50mA max.
	24Vdc ± 10% non stabilized 50mA, (100mA max for the
	020/420mA transmitter input model only)
Power supply (switching type)	(standard) 100240Vac/dc ±10%
	(optional) 1127Vac/dc ±10%
	50/60Hz, 8VA max.
Faceplate protection	IP65
Working / Storage temperature range	050°C / -2070°C
Relative humidity	2085% Ur non-condensing
Environmental working conditions	for indoor use, altitudes up to 2000m
Installation	panel, removable faceplate
Installation specifications	installation category II, pollution level 2, double isolation
Weight	160 g complete version

6 • MAINTENANCE

This section gives the information and the necessary warnings for routine maintenance of the instrument and contains a Troubleshooting Guide which should be read before seeking help from the Gefran Customer Service Assistance, in the event of instrument malfunction.

If installed and configured correctly according to the instructions and the recommendations provided in Sections 2 and 4 of these Instructions for use, the instrument will work normally without any need for maintenance, apart from the usual operations of cleaning the faceplate, and if necessary the internal parts of the instrument.

To gain access to the inside of the instrument (for example for cleaning or to check the jumpers) just undo the screw at the bottom of the faceplate and take out the instrument without having to disconnect the cables.

Make sure that the power is turned off upstream of the instrument however.

Remember that the 4B96 indicators is not equipped with an ON/OFF switch.

Cleaning the Instrument

To clean the faceplate and the case use only a cloth dampened in water or ethyl alcohol. Do not use hydrocarbon-based solvents

(trichiorethylene, petrol, etc.).

Do not use compressed air to remove dust from the electronic circuit boards, if necessary use a clean brush with soft bristles.

Repairs

Repairs to the 40B96 instrument must only be carried out by qualified technicians, properly trained and authorized by Gefran. Any attempts at repair or modification of the instrument hardware characteristics by unauthorized personnel will invalidate the warrantya.

Checking the jumpers

The solders side of the CPU board contains the jumper S4 which enables (if on) access to the menus.

The instrument contains components which are sensitive to electrostatic discharge, so the relevant precautions must be taken when handling the electronic circuit boards contained in it, in order to avoid permanent damage to components themselves.

Ģ

00

00

Device structure: identification of boards

CPU BOARD + POWER SUPPLY BOARD

Jumper S4 is normally closed. To change its state, the connection has to be removed. This operation must be done by trained technical personnel.

Troubleshooting Guide

Symptom	Cause and Recommended remedy		
The instrument display and	Instrument power supply problem. Check that power is being supplied to terminals 10-11.		
Led do not come on	make sure the power supply corresponds with the one stated in the order code:		
	4B96 5 xx - 1 = 100240Vac/dc		
	4B96 5 xx - 0 = 1127Vac/dc		
The characters shown on the	Possible fault with one of the display segments. Check that all the segments are working pro-		
display are incomplete or	perly by switching the instrument off and then on again. When it is switched on again a self-		
illegible	diagnostic test is performed that checks intermittent start up of all the segments (displays the		
	value BBBB). If one or more segments do not light up contact your Gefran dealer.		
When pressing down 🕞 none	If the problem appears during the first installation, it probably means that the hardware		
of the configuration menus can	configuration doesn't allow changing of the default parameters beyond the alarm setpoint		
be accessed	value. (Parameter change is enabled by jumper S4 on the CPU board). If on the other hand		
	the problem occurs on a instrument that previously gave access to the configuration		
	parameters, this probably means that there is a false contact on the jumper S4.		
	In this case check the continuity of the jumper referring to the previous paragraph.		
When pressing down (F) not	Access to some menus and/or parameters is protected by a password (PA) and a code (PR)		
all of the parameters and/or	that limits configuration mode.		
configuration menus can be	To set the password and the protection code correctly refer to Section 4		
accessed	"Configuration/Programming".		
Instead of the process variable	In the first four cases it means that an input error has been found (for details refer to Section 3		
the PV display shows one of	- Functions).		
the following:	In the last case, it means probe power supply failure.		
Lo – HI – br – Er – Eb	This function has to be enabled via parameter c.l. on the In menu.		

7 • TECHNICAL/COMMERCIAL INFORMATION

R.

This section contains information regarding the instrument order codes and the main accessories available.

As stated in the Preliminary Warnings of these Instructions for Use, correct interpretation of the instrument order code allows the hardware configuration to be identified immediately and so it is essential to quote the order code each time the Gefran Customer Care Service is contacted for assistance with any problems.

Order code – 4B96 indicator

* Specific model for use with transmitter 20mA (es for position magnetostrittive sensor)

** Selectable (standard 24Vdc)

ACCESSORIES

TTL interface for GEFRAN instrument configuration • RS232

N.B. RS232 interface for PC configuration is supplied with the WINSTRUM programming software. Make connection with instrument powered but with inputs and outputs disconnected.

APPENDIX

R

The appendix contains the list of all the abbreviations of parameters which appear in the various configuration/programming menus with the respective default values and meanings. The CONF column can be used to indicate the user's modified values with respect to the default configuration, on the basis of application requirements.

Display	Default	CONF	Acronym	Description
Menu #F				
Ud	3.20		UPdate	Software version identification
На			Conf Hardware 1	Hardware outputs configuration
5H,			Conf Hardware 2	Hardware inputs configuration
Menu In				
Ł₽	0		type of Probe	Probe type, signal, enable linearization, etc.
E I	0		Sample time	Select sampling time
FE	0.1		FiLter time	Digital filter on input
Fd	0.5		FiLter display	Digital filter on display
dP.	0		Decimal point	Decimal point position for input scale
L.5	0		Low Scale	Minimum limit input scale
H.S	1000		High Scale	Maximum limit input scale
oF	0		oFfSet	Offset correction of main input
ЕU	0		UP key	Raise key function
Ł.d	0		DOWN key	Lower key function

Menu Lo - Input linearization 00 – 32														
N°	Default	CONF	N°	Default	CONF	N°	Default	CONF	N°	Default	CONF	N°	Default	CONF
.00	0		.07	219		.14	437		.21	656		.28	875	
.01	31		.08	250		.15	469		.22	687		.29	906	
.02	62		.09	281		.16	500		.23	719		.30	937	
.03	94		.10	312		.17	531		.24	750		.31	969	
.04	125		.11	344		.18	562		.25	781		.32	1000	
.05	156		.12	375		.19	594		.26	812				
.06	187		.13	406		.20	625		.27	844				